作者:欧阳自远
出品:新浪科技《科学大家》 墨子沙龙
欧阳自远:中国科学院院士、发展中国家科学院院士和国际宇航科学院院士,我国陨石学与天体化学领域的开创者。现任中国科学院地球化学研究所研究员,国家天文台高级顾问。
1993年以来,主要从事中国月球与深空探测的近期目标与长远规划的制订,设计我国首次月球探测的科学目标与载荷配置和第二、三期月球探测的方案与科学目标,是中国探月工程的首任首席科学家,现为月球探测领导小组高级顾问。
欧阳自远院士长期从事陨石学、月球科学、地球与行星科学研究60多年,成果获国家科学大会奖、国家自然科学奖和科技进步奖多项、贵州省最高科学技术奖,中科院自然科学一等奖和科技进步一等奖、工信部科技进步特等奖、国家科技进步特等奖等。
(内容整理自墨子沙龙"向太阳系的星辰大海挺进"活动)
谢谢主持人的介绍,感谢墨子沙龙的邀请,很荣幸能参加墨子沙龙的活动。我今天要讲的题目是向太阳系的星辰大海挺进。
大家看到这个题目可能觉得不对,我们现在总是说要向宇宙进军,要揭开宇宙的奥秘,要进行星际的探测,但我还要是老老实实地说,现在人类的能力和水平只能向太阳系的星辰大海挺进。我大约分五部分,来介绍这里面的内容。
前言
人类自古以来深受神权影响,当时在欧洲最流行的地心学说,说的是所有的天体都围绕着地球转。太阳是绕着地球转东出西落,整个宇宙都是绕着地球转,地球是中心,这也符合上帝创世的传说。
1543年,哥白尼提出了日心学说,即太阳系的这些行星,都受太阳控制,一方面自转,一方面绕着太阳公转。这是一个革命性的发现,也带来了科学的蓬勃发展,让我们从此对整个太阳系的认识走向了一条正确的道路。
日心说被证实后,大家就要研究整个宇宙尺寸、历史等。从哥白尼以来的500来年,经过科学家们的不懈的努力,我们认为宇宙在大约138亿年前有一次大爆炸,形成了千千万万个星系,而现在宇宙可见的半径大概有460亿光年。
宇宙的年龄大约138亿年,宇宙大爆炸形成了千千万万个星系。宇宙可见半径为460亿光年。宇宙是所有时间、空间与其包含的内容物构成的统一体。
宇宙形成了千千万个星系,我们居住的星系叫银河系,中国古代叫天河。银河系只是宇宙千千万个星系当中的一个,直径大约有十万光年,也是非常庞大而浩瀚的。
一条天河上面有很多星星,"天上的星星亮晶晶"。因为天上的星星自己可以发光,所以才能被看到。银河系里有那么多星星,我们的太阳是千千万个星星当中的一个,现在已经知道银河系里大概有2000亿个"太阳",我们的太阳是其中一个,在银河系的一个悬臂上。这2000亿个"太阳"中,每个"太阳"都管了一串行星。我们所在的地球,也只是太阳系管辖的八大行星之一。银河系里的"太阳",哪个"太阳"比较大,带的行星可能就会比较多。在银河系里2000亿个"太阳"里,我们所在的太阳系是银河系里面普普通通的一个。所以即使以银河系的尺度来看,我们都是沧海一粟,所以以人类现在的探测能力,只能探测到太阳系。
1977年,美国发射了两个探测器,叫旅行者一号和旅行者二号。到今天飞了44年,这44年一直以第三宇宙速度,每一秒钟飞16公里,这速度看起来很快,但44年飞了多远呢?就在下图中弓形激波旁边,蓝色三角形显示的位置。而太阳系到底有多大呢?地球跟太阳的距离是1亿5000万公里,我们把它叫做一个天文单位,太阳系管辖的范围有10万个到20万个天文单位,即15万亿到30万亿公里。那旅行者一号二号飞到哪了?只飞了260亿公里。
1977年发射的"旅行者1号、2号",飞行44年到达距离地球260亿千米(~174天文单位),到达太阳系半径的千分之一。
我们太阳系的邻居,正式名称叫半人马座阿尔法,中国人叫它比邻星,天涯若比邻的意思。太阳跟比邻星的距离,有15万亿到30万亿公里。那么旅行者一号、二号只飞了太阳系半径的千分之一。所以假如从地球上发射探测器,以现在人类的技术水平,大概要三万年才能够飞出太阳系到半人马座,比邻星管辖的范围。所以以现在的能力,我们根本出不去。
旅行者一号、二号是国际上非常有名的探测器,他们开始以为路上一定能够碰见外星人,所以录了一些光盘,一边飞一边放出来,向外星人问好。另外挑了一些非常好听的乐曲,比如我们中国的"高山流水"也被挑进去了,希望外星人喜欢我们地球人类的音乐。但飞了40多年了,现在还在太阳系里头。
下图在太阳的旁边的是八大行星,太阳系外面还有更浩瀚的奥尔特云,要飞三万年才能飞到。太阳系有八大行星,而我们去年才去火星,所以我们现在人类的探测只是行星际之间的探测,还要几十年才慢慢地飞过这八大行星,还要上千年、上万年,才能飞出太阳系。所以我老老实实地说,我们人类现在深空探测的任务,就是要探测行星际空间的太阳系。
太阳系的半径10-20万天文单位,15-30万亿千米,大约2—3光年。飞行器以第三宇宙速度飞行(16.7km/s),至少需要3.2万年才能飞出太阳系的边界。
这几十年以来,科学家们也想,银河系里2000亿个太阳,应该也会有另外一个地球,也会有外星人和高度发展的文明?所以这几十年以来,科学家们发射了一系列太空望远镜。我们去不了,但是望远镜可以看见,就可以去寻找,有没有哪个"太阳"的哪颗行星像我们的地球,它的大小、与太阳的距离跟我们差不多,有没有可能培养出物种,甚至出现智慧生物,建立高度的文明。
科学家抱着极大的期望,发射了那么多的太空望远镜,著名的有哈勃望远镜、开普勒望远镜等等。经过这几十年的努力,在银河系里找到了700到800个比较像地球的行星。那上面是不是有外星人呢?这虽然引起了科学家极大的兴趣,但是很遗憾,距离地球太遥远了,无法进行探测。比如开普勒找到了地球的一个表兄弟,或者叫"2.0版"的地球——开普勒186f。它离我们地球有500光年。也就是我们用望远镜看到它的形貌,是他500年前的情况,光从它那儿传到地球要经过500年的时间。
Kepler-186f距离地球~500光年(对应于明朝中期);有些类地行星相距1800光年(对应于汉末三国时期)
我们现在人类的技术飞一个光年大概要一万年,光每秒钟30万公里,而我们的探测器一秒钟十六七公里,速度差的太远了。俄罗斯有一位科学家齐奥尔科夫斯基(1857—1935),他的墓志铭上说,"地球是人类的摇篮,但人类不可能永远生活在摇篮里。开始,他们将小心翼翼地穿出大气层,然后便去征服太阳系"。应该说,从他逝世到现在80多年了,他的预言是非常正确的。1957年,苏联发射了第一个人造地球卫星,宣布了人类空间时代的到来。令人更没有想到的是,1958年美国和苏联两个超级大国去探测月球,实现了人类飞离地球、开展深空探测、去月球探测的梦想。紧接着, 1960年苏联发射了火星一号探测器,美苏又去探测火星。我们的每一步都相差他们大概半个世纪。
更没有想到,1961年苏联加加林上天,而我们的杨利伟同志是在2005年上天。发展更快的是美国。1969年,阿姆斯特朗搭载美国的探测器着陆在月球上,实现了人类第一次着陆。有两位航天员,一个是阿姆斯特朗,一个是奥尔德林。阿姆斯特朗说,"这对我个人来说是一小步,而对人类来说是一大步"。而我们国家是一位后来者,但我们要加快步伐,有自信一定要实现月球探测、太阳系的探测。
当代的太阳系探测:月球探测是起点,火星探测是热点,小行星探测是亮点,行星际穿越探测是难点!
月球探测是起点
深空探测指的不是绕着地球的卫星、空间站等,这些不属于深空探测,而属于近空探测,因为它离地球太近了,四五百公里距离。而深空探测的最低限度要到月亮,38万公里,所以月球探测是起点。在1957年,苏联发射了第一个人造地球卫星,引起了全球的震撼,这是空间时代到来的标志。
而1957年,我刚刚大学毕业不久,学校分配我去考副博士研究生。我们国家要工业化,一定要找到资源和能源,而工业化最重要的是铁和铜。但1957年的时候,我们年轻的共和国成立也还不到十年,百废待兴、一穷二白。我们当时没有能力发射地球卫星,更没有能力冲出地球,进入太阳系的空间。即使在这个时候,我们国家也很有远见地成立了很多庞大的、航天相关的公司和集团,比如后来的中国航天科技集团、中国航天科工集团,以及中国电子科技集团等。一个个集团的相继成立,说明国家下定决心一定要发展高技术。
我们国家的大方向抓得非常对。在1970年我们也发射了第一颗人造地球卫星,可以发射导弹、火箭、卫星,慢慢也可以发射飞船了。我们逐步加快速度,去追赶那些航天大国。
首先要解决探月技术问题,这是个根本,解决别人对中国人能力的质疑。但是去月球干什么?月亮上有什么科学问题?探索月球对人类究竟有多大的意义?这些问题都要进行严肃的讨论。
我发现当时没人论证、准备这些问题,在这种情况下,我就说那我来考虑一下。我是学地质的,对地球比较了解。地球、火星等八大行星都是太阳系的兄弟姐妹,是一个家族的。在了解了地球之后,就可以基本知道他的兄弟姐妹有哪些基因。虽然他们每个人生存的环境、地位不一样,每个人的个性也有不同,火星是这样,金星是另外一个样子,而水星又有一番样貌。但是我有地球科学的基础,再了解一些其他几颗行星,就能够知道到月球上该干什么,到火星上该干什么,能得到什么。
所以当时,我想应该怎么下手去做呢?最后找到了一个办法,从太阳系的起源开始考虑。太阳系是在银河系里面的一团星云慢慢地运动凝聚起来,最后形成了八大行星和整个太阳系。太阳系可能只是第一代,第二代甚至第三代星云,并不是最早形成的。宇宙有138亿年的历史,而太阳是50亿年以前诞生的。四周的尘埃、气体,都绕着太阳转,而如今这些尘埃气体呢?太阳年轻的时候火力很盛,而且温度很高,把星云里面的那些尘埃颗粒,都给融了。融掉以后,它们慢慢的在不同的轨道聚集起来,形成了现在的八大行星。
太阳系的形成过程。球粒陨石是形成太阳系的原始物料。
所以我找到了形成太阳系最原始的东西,这个东西叫什么呢?叫球粒陨石。太阳系在星云里把这些尘埃都融了,然后慢慢冷下去,这些像水珠一样的东西慢慢结晶出来,在显微镜下可以看到一个个的小球。这些是组成地球等行星的原始物料。我要从根本上看看它们是些什么东西,有什么成分,是怎么形成的。有了这一步,好了,最后八大行星都是由这些东西组成的。
我也测出了那些球粒陨石的年龄,大约是46亿年。在45.5亿年或者45.6亿年前,地球才开始从胚胎慢慢演化。这些东西组成现在行星。另外还有一些更小的碎块,也慢慢汇集起来,就在太阳系里面分布着大大小小的多极,我们叫做小行星。这些球粒陨石碎块聚集起来后,因为含有很多放射性元素而产生很高热量,小行星被融化了。类似炼钢炉里,重的物质往下沉,轻的往上浮。我们的地球、月球也经历了这样的过程。
46--45.5亿年,太阳系行星形成
结果所有的小行星、月球、地球,它们的核心部分叫铁镍核心,是比较沉的物质,沉在化铁炉的底部,而上面的炉渣全是石头。所以,每一个小行星、卫星、行星,都经过这样的分异,把这些天体变成好多层。假如一个小行星被撞碎,它的核心部分形成的陨石就是我们后来找到的铁陨石;靠外侧的部分,有石头、有钢铁形成了石铁陨石;最外面只有石头的部分,形成了无球粒陨石。
所以我就开始研究降落在中国的各种类型陨石。一种就是铁陨石,这种铁陨石的结构剖开后有一种花纹,这种花纹,是现在的冶金学家做不出来的。因为它的炉子是100万年一度、经历上亿年的冷却,最后凝固成为合金。这是天然炼出来的合金,人类无法仿制,这是铁陨石的特点。
陨石是空间探测研究进门的一个很重要对象。从1958年,我就开始研究我们天上掉下来的各种各样的陨石。最有名的就是1976年,吉林降落了一次陨石雨,那是球粒陨石,是最原始的陨石,也是世界上规模最大的。着陆的时候,它通过大气层高速冲进来,一大块碎成了三个大火球,往最前冲,最后很多碎块噼里啪啦地掉在地上,降落在吉林市的北郊,分布面积大概500平方公里。当时国家组队,我带队去考察吉林陨石,发表了100多篇论文。
之后我就慢慢做各种各样陨石的研究,开始了解月球、地球、火星最原始的物质是什么。后来这些物质融化再改变,会变成什么样子,它的历史我也可以大概知道。不用去月球,如果有一个小天体撞在月亮上砸了一个大坑,那些石头就会被粉碎后抛出来,当然99.9%要降回到月亮上去,但总有一些逃离了月亮引力,在太阳系里面乱飞,有机会掉到地球上来。
现在人类已经找到了大概400多块从月亮上掉下来的月球的岩石,300块从火星上掉下来的岩石。同样的方法,我可以研究月球、研究火星。大家开始通过了解地球,从而推测月球的原始物质是怎么一步一步变成现在月亮上的样子。
当时美国技术先进,可以派无人机飞到 40公里的高空去收集太阳系的尘埃,当时那个地方的那些尘埃都叫宇宙尘埃。中国没有这个技术,所以我们采取了另外的一个办法。在20世纪80年代初的时候,中国可以造出特别大的高空气球。大概有几层大楼高,底下吊了一个吊篮,那吊篮就是收集器。首先让它在北京放飞升空,放到了37公里的高空,一般飞机飞不了那么高,之后碰到西风带,就把气球就吹到太平洋,慢慢吹到了太平洋。之后开始抛沙,气球就变轻,继续上升到40公里的高空,和美国的无人机高度一样。
我们也带了很多收集器,也可以收集到高空的各种宇宙尘埃。从1958年开始研究,到1978年美国要与中国建立正常外交关系,双方确认在1979年1月1号中美正式建交。为了准备好建交事宜,美国时任总统卡特命令他的安全事务顾问布瑞金斯基到中国来访问,来商谈具体事宜。卡特总统有两样东西让他带给中国领导人,一样是一面书本大小的中华人民共和国国旗,并说,这是我们美国人把中国的国旗带上月球又带回来的。另一样是一条有机玻璃,里面有一块石头,有机玻璃本体做成了一个凸透镜,并说这是我们美国人从月球上采回来的样品。这两件珍贵的物品作为建交的礼品送给中国。
这面国旗是不是带到月亮上又带回来的无法考证,但这块样品,中国有没有哪位科学家可以做做验证,它到底是不是月亮的石头啊?于是中办打电话问了高教部,说大学里头有没有哪位教授研究过月亮的石头,回答是没有一个人做过。
后来又问中国科学院,中国科学院也说没人搞过。那怎么办呢?后来中国科学院想起来,说这儿有一个研究员,专门研究天上掉下来的东西,是不是可以让他来研究一下是不是月亮的石头。当时就通知我们去领这块石头。领回来以后,我非常高兴,因为有机玻璃是透亮的,可以直接看到里面这块小石头,大概有小拇指大小。
我组织全国相关的实验室,包括核工业部、冶金部和中国科学院的同志,共同来研究这块小石头。我分了一半送给北京天文馆,说你们好好展出,让中国人也看看什么是月亮的石头。
最后全国一共发表了14篇文章。后来美国NASA的官员遇见我说,欧阳,我们什么都没讲,结果你们全知道了,而且了解的比我们还多,你们还是有能力的。所以我也是这样一步一步的,完成这些工作。我当时还写了一些书,像《月球科学概论》,《天体化学》等等。另外也写了一些科普书。总之,我们从准备工作,一步一步地克服各种困难,从1958年最后到1993年,准备了35年,培养了一支队伍,建立了相关的实验室。我们中国除了能够到月球,火星以外,我们取回来的东西,也可以研究它的一些过程。
所以,我们向国家报告,中国现在可以去探测月球了。但国家说不行,你们要进行科学论证。我说要做什么论证?回复说,中国为什么要去探测月球,它的可行性怎么样,它的必要性又是怎么样?我们准备了一年多报告,结果863的评委说太好了,就中国有可能搞,而且有必要搞,完全可以搞成月球探测。论证通过后,国家还说不行,不能只发一次探测器,探测器发完后该怎么搞,你们还应该制定一个长远规划,分哪几步完成月球探测。我们又准备了一两年,做了各种调查,最后答辩的时候大家很高兴,就按这个办法,按这个规划去做。
我们规划的第一步是无人月球探测。这又分三小步,第一,发射一个月亮的卫星,绕着月亮飞,飞一个月下来,月亮的一圈全看到,就能全面地了解月球。第二步叫落月探测。落下去对某一个重点地区进行精细的探测,可以解决更深入的问题。再下一步,取样返回,这些都是不带人的。
这些工作后来就被命名为嫦娥工程。嫦娥一号、二号是绕月探测,嫦娥三号、四号是落月探测,嫦娥五号、六号是取样返回,都是无人探测。有了这个基础后,载人登月、建设月球基地可以按这个基础做下去。后来国家又说,第一次到月亮上去干什么,有什么科学问题,怎么实现这些探测任务?又搞了一两年,就是研究中国月球探测的科学目标。我不懂技术,技术有专门的大企业去完成,我只负责其中的科学研究。后来成立了中国探月的领导小组,有栾恩杰院士作为总指挥,和孙家栋院士作为总设计师,又加了一个首席科学家,任命我去承担这个任务。这样我们三个人组成了一个集体,人们称呼我们为铁三角,就开始了嫦娥一号的探测。
中国探月工程的进展
2004年国家批准了月球探测规划,从无人探测到有人探测,再到载人登月、建设月球基地等等步骤,都获得通过。这样的话,我们的月球探测的进展比人家晚了四五十年,嫦娥一号2007年发射,是一个绕月的卫星。当时制定了嫦娥一号的科学目标,每一次月球探测,都要放一些特殊的仪器上去。另外我们比别人晚去了几十年,有好多活人家都干过,比如月球的全月球地图、立体图,人家干过好多回了。不管怎么样,因为我晚去所以要比你做得好才有意义。另外,月球表面有哪些矿物、有什么资源、怎么分布等等,人家也做过了。我们也要做这个,这是探测的基础,是任务的保底,但我们要比别人做得好。另外,要测地月的空间环境,我们也有新招,但是我总有一两样你们谁都没干过,这是中国的创新。我们嫦娥一号完成了一个艰巨的任务,看一下月球土壤里头有多少氦3,这是人类从来没有测出来过的。
氦3有什么价值呢?现在人类的能源主要是煤、石油这些化石能源,还有各种各样的清洁能源,像水力发电、太阳能发电等。而核裂变发电已经出了好几次大事故了。下一步人类的一种终极能源,是研究太阳的核聚变能源。100多年以前,人们搞不清楚,凭什么太阳每天都光芒万丈?后来知道了,太阳上一直在进行大规模的长时间的氢弹爆炸。人类在世界上造出了氢弹,这是人类当前最大的杀伤性武器。现在人类意识到,未来人类的终极能源是利用氢弹爆炸这种方式来产生能源,叫核聚变发电。这个聚变发电可以产生巨大的能量,用氢的两个同位素,氘和氚。但是氚在地球上的储量不多,并且具有放射性。所以很想找一个东西替代氚。后来科学家们研究发现,氦有一个同位素叫氦3可以用来进行聚变。但地球上也没有氦3,氦3是太阳风给的,而月亮光秃秃没有大气,太阳风可以直接注入到月球表面的土壤里。
所以我猜月球表面月壤一定有很多氦3。最后用专门的仪器探测出来,全月球的氦3资源,大概有110万吨。看起来没多少,只有110万吨。相比之下,中国现在每年消耗石油3亿吨,煤20几亿吨。这些能源都是按亿吨来算,你才百万吨。但是假如核聚变发电能用上氦3的话,每年全世界的用量是100吨。月亮现在有110万吨,至少可以解决未来人类一万年的需求。所以嫦娥一号取得了很大的成功。这是我们做的最好的立体图,正面、背面的全部成分。另外还有月球土壤里的各元素浓度、总量、分布,我们全做出来了。嫦娥一号发射后,紧接着在2010年发射嫦娥二号。嫦娥二号在一号的经验上,直奔月球。
月球正面与背面月壤中氦-3资源量的分布(10^-9克/m^2)。全月储量约103 ~ 129万吨。
嫦娥一号花了一年零三个月才完成任务。嫦娥二号大概半年全部任务完成,它飞得更低,做出来的图分辨率最高。全月球的地形地貌的立体图和平面图的分辨率达到七米。现在全世界都用中国的图。另外呢,由于嫦娥二号仅用半年就完成全部任务,可以让它干点别。后来刚好有一个小行星朝地球飞来,这是人类刚刚发现的,仅仅给它取了个名字,但是不知道它有多大、什么样子、会不会对地球造成威胁。曾经因为一个小行星撞在地球上,导致了全球的生态环境的崩溃,灭绝了100多万个物种,包括恐龙。而现在又有一个小行星来了,后来大家同意,走,去探测这个小行星去。因为小行星还没到,所以第一步走到离地球150万公里的地方,针对太阳监测了235天,人类得到有史以来最丰富的太阳活动探测结果。
No comments:
Post a Comment